Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

نویسندگان

  • Eric M Young
  • Alice Tong
  • Hang Bui
  • Caitlin Spofford
  • Hal S Alper
چکیده

Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe(38)Ile(39)Met(40), Scheffersomyces stipitis rgt2 Phe(38) and Met(40), and Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340) all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a conserved motif in the yeast golgi GDP-mannose transporter required for binding to nucleotide sugar.

Glycoproteins and lipids in the Golgi complex are modified by the addition of sugars. In the yeast Saccharomyces cerevisiae, these terminal Golgi carbohydrate modifications primarily involve mannose additions that utilize GDP-mannose as the substrate. The transport of GDP-mannose from its site of synthesis in the cytosol into the lumen of the Golgi is mediated by the VRG4 gene product, a nucleo...

متن کامل

A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters

Membrane trafficking is highly organized to maintain cellular homeostasis in any organisms. Membrane-embedded transporters are targeted to various organelles to execute appropriate partition and allocation of their substrates, such as ions or sugars. To ensure the fidelity of targeting and sorting, membrane proteins including transporters have sorting signals that specify the subcellular destin...

متن کامل

Identification of an important motif that controls the activity and specificity of sugar transporters.

Efficient glucose-xylose co-utilization is critical for economical biofuel production from lignocellulosic biomass. To enable glucose-xylose co-utilization, a highly active xylose specific transporter without glucose inhibition is desirable. However, our understanding of the structure-activity/specificity relationship of sugar transporters in general is limited, which hinders our ability to eng...

متن کامل

Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis.

Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual m...

متن کامل

Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga.

The unicellular red alga Galdieria sulphuraria is a facultative heterotrophic member of the Cyanidiaceae, a group of evolutionary highly conserved extremophilic red algae. Uptake of various sugars and polyols is accomplished by a large number of distinct plasma membrane transporters. We have cloned three transporters [GsSPT1 (G. sulphuraria sugar and polyol transporter 1), GsSPT2 and GsSPT4], f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 1  شماره 

صفحات  -

تاریخ انتشار 2014